
MagicClay: Supplementary Material

ACM Reference Format:
. 2024. MagicClay: Supplementary Material. 1, 1 (October 2024), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 IMPLEMENTATION DETAILS
For reproducibility, we describe the settings used during the opti-
mization. We intend to release the code upon acceptance.

1.1 Initialization
To initialize our hybrid representation at a consistent state, the mesh
is encoded as an SDF at the start of the optimization. We use the
pySDF library to get ground truth SDF values of the mesh, and
in each iteration sample 1M points as described in [Müller et al.
2022], with the loss being the sum of the square differences between
each samples value evaluated with the SDF network and the ground
truth SDF. Due to the fact that the SDF rendering is sample based,
the resulting SDF renders are usually blurry, as seen in Figure 1
Stage 1. The sampling done along the rays is dynamic using the
NeRFACC library [Li et al. 2023]. To correct the blurriness and get a
more consistent starting point for the optimization (for example, the
one shown in Figure 1 Stage 2), we further optimize L2 multiview
consistency losses for 300 iterations.

t= 300t=0, After instant-NGP embedding

RGB Normal Opacity RGB Normal Opacity

Fig. 1. Effect of the two-stage initialization. Top row : SDF render. Bottom
row : mesh render. L2 multiview consistency losses provides a more consis-
tent starting point for the hybrid representation, in addition to allowing
initializing the SDF appearance network based on the initial mesh texture
on non-editable areas.

Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/10-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1.2 SDF representation
The SDF network uses hashgrid encodings similar to Instant-NGP [Müller
et al. 2022], which allows to significantly shrink the MLP and
consequently the cost of SDF queries, making the initialization
take 5-10 minutes for 2000 iterations on a A100 GPU. We use the
TextMesh [Tsalicoglou et al. 2024] implementation in ThreeStu-
dio [Guo et al. 2023] as our SDF backbone, with the default hyper-
parameters (namely, 𝜆𝐸𝑖𝑘𝑜𝑛𝑎𝑙 = 1000).

1.3 Training Procedure
We run our pipeline for 10000 iterations. and use 𝜆𝑁𝑜𝑟𝑚𝑎𝑙 = 0.1 and
𝜆𝑅𝐺𝐵 = 0.1 and 𝜆𝑚𝑒𝑠ℎ𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = 0.1. Additionally, we apply the
mesh smoothness loss only to non-frozen vertices.

1.4 mesh learning rate schedule
We use [Barda et al. 2023] as the re-meshing backbone. We set the
learning rate to be 0.1, which we found provides a good balance
between mesh responsiveness to the current SDF state while still
keeping a stable and uniform expansion front. for the last 500 itera-
tions we reduce the learning rate to 0.05, to promote convergence
to a smoother mesh.

1.5 Topology updates to maintain the border between
editable region and non-editable region

Special consideration must be given to topology edits when dealing
with edges or faces that have a mix of frozen (i.e, not editable) and
editable vertices. We outline the rules used in our pipeline:

(1) Face split. If one or two of the face’s vertices are frozen this
face can still be split, and the newly created vertex is editable

(2) Edge collapse. If one of the edge’s vertices is frozen the edge
may be collapsed, with the new vertex belonging to the frozen
set of vertices.

(3) Edge split. For each edge, we observe it’s one-ring vertices.
An edge may be flipped if one of these two conditions are
met: (i) any of its opposite vertices are editable or (ii) both of
its vertices are editable.

2 EVALUATION

2.1 Unconditional text-to-3D
Average Clip Score Calculation. We average the clip score over 20

renders uniformly over a circular camera pattern, illustrated in Fig-
ure 2. The camera parameters used (using the standard Threestudio
[Guo et al. 2023] camera definitions)
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑔 = 15𝑜
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑔 = (−10, 90)
𝑎𝑧𝑖𝑚𝑢𝑡ℎ_𝑟𝑎𝑛𝑔𝑒 = (−180, 180)
𝑐𝑎𝑚𝑒𝑟𝑎_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3.0
𝑒𝑣𝑎𝑙_𝑓 𝑜𝑣𝑦_𝑑𝑒𝑔 = 70𝑜

List of prompt in the benchmark. The prompts are randomly cho-
sen from the Threestudio curated list.

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 •

Fig. 2. Clip Score calculation.We illustrate four cameras out of 20 that
are used to render the mesh and compute a averaged Clip score.

(1) A DSLR photo of a Space Shuttle
(2) A DSLR photo of a pug wearing a bee costume
(3) A DSLR photo of a roast turkey on a platter
(4) A DSLR photo of a squirrel made out of fruit
(5) A DSLR photo of a toy robot
(6) A DSLR photo of a tree stump with an axe buried in it
(7) Flower made out of metal
(8) A lionfish
(9) A plush dragon toy
(10) A typewriter
(11) A DSLR photo of a barbecue grill cooking sausages and burger

patties
(12) A DSLR photo of a bulldozer
(13) A DSLR photo of a car made out of sushi
(14) A DSLR photo of a chow chow puppy
(15) A DSLR photo of a delicious croissant
(16) A DSLR photo of a frog wearing a sweater
(17) A DSLR photo of a ghost eating a hamburger
(18) A DSLR photo of a green monster truck
(19) A DSLR photo of an iguana holding a balloon
(20) A delicious hamburger

2.2 More baselines for local generative editing.
Instruct Nerf2Nerf Results. InstructNerf2Nerf [Haque et al. 2023]

is a recent pipeline for editing NeRF scenes using prompts. The
official implementation uses Instruct-Pix2pix [Brooks et al. 2023],
which is trained on real images and is not suitable for synthetic
data, Therefore it does not work for sculpting an existing 3D mesh
because of the domain gap. Our best attempts at applying Instruct-
Nerf2Nerf on synthetic data are given in fig 3. An email has been
sent to the author, but as of the submission date, no response has
been received.

TextDeformer details. Naively, one can attempt to perform edit-
ing using TextDeformer [Gao et al. 2023] by simply masking the
gradients for all frozen vertices. In practice, TextDeformer does not
perform the optimization directly on the vertices, but rather on their
Jacobians, making decoupling the gradients for individual vertices
not trivial, which in our experiments resulted in failure to converge.
In order to apply TextDeformer for mesh editing tasks, we perform

“Turn him to a 
minotaur”Renders NeRF

“Turn him to 
Iron Man”

Fig. 3. IntructNerf2Nerf results on synthetic data. IN2N uses NeRFStudio’s
Instruct-Pix2Pix as a backbone, which works best on real image. We show
our attempts to use IN2N for synthetic data (male human mesh from the
SMPL dataset). Applying IN2N on the resulting NeRFs lead to very blurry
results.

.

“A Cow with a chef’s hat” “A cow with angel wings”
“A Kangaroo with 

boxing gloves”
“A kangaroo 

wearing a backpack”

Fig. 4. TextDeformer output without post-processing. To complement
the results presented in the main paper, we show the results of TextDeformer
without our post-processing to localize the edit. As can be seen, the shape
is globally affected.

.

a simple post process on the results: we first run TextDeformer on
the input mesh with the input prompt to get the results shown in
Figure 4. We combine the meshes by taking the frozen vertices of
the original mesh and the non-frozen vertices of the edited mesh.

DreamEditor. The official implementation for DreamEditor [Zhuang
et al. 2023] has a demo that runs on the authors’ preprocessed data.
However, running the method on new data is significantly chal-
lenging. Other users have opened issues on Github and the matter
remains open as of submission time.

2.3 Further Details on Reconstruction Experiment
The model used was "Spot" [Crane et al. 2013] . The cameras were
spread uniformly on the unit sphere in a 3X3 grid going over the
elevation and azimuth axis respectively, as shown in Figure 5, pro-
ducing 9 different renders.

2.4 Further ablation
No face super-sampling for mesh colors. Figure 6 illustrates the

need for themesh-driven super-sampling of the appearance network
based on Mesh Colors scheme explain in the Method section of
the main paper. We optimize our representation with respect to
a target image (first column), either sampling colors per-vertex
(second column), or using our adaptive sampling using MeshColors
(third column). Note that without MeshColors sampling a much
higher resolution is needed, which leads to poorer reconstruction
and an over-tesellated mesh.

, Vol. 1, No. 1, Article . Publication date: October 2024.



SM • 3

3 APPLICATION

3.1 Application: Animation Transfers
In production, meshes typically carry animation information. For
instance, a rig i.e. a collection of joints connected in a tree graph
structure. Each joint is coupled to a group of vertices, so rig move-
ments can be translated to mesh movement. This coupling is given
by vertex groups, which is part of the mesh metadata. Because the
non-editing regions are preserved, MagicClay allows us to carry
over this information through the optimization.

Vertex group assignment are trivially preserved in the non-editing
region. For the editing region, we simply need to ensure that the
information is preserved through the various topology updates of
ROAR [Barda et al. 2023]. For each vertex, we add a vector of size
#VG, which is a one-hot encoding for the respective vertex group.

Fig. 5. Camera setup for the multi-view reconstruction experiment. The
cameras are set up in a 3X3 configuration uniform on the unit sphere, camera
for training views are circled.

.

Appearance (SDF) MeshColors + Appearance 
Network (Ours)

No color supersampling

Fig. 6. Ablation: no color supersampling. Using mesh-guided super-
sampling in conjunction with the appearance network allows to decouple
geometry and appearance. Using this approach (top right), large faces are
used for the mesh, even though the rendering still presents high frequency
colors (bottom). When using a color-per-vertex scheme (top middle), signifi-
cantly larger mesh resolution is required to achieve similar appearance.

Fig. 7. Vertex Group Transfer. We superpose the mesh before and after
editing by MagicClay. We color the vertices based on their membership to a
specific vertex group. In each column, we choose a different vertex group.
The topology updates of ROAR [Barda et al. 2023] preserve vertex features,
such as the vertex group used in animations.

Fig. 8. Animation Transfer. We perform the animation transfer on the
preexisting SMPL [Loper et al. 2015] animations, given in FBX format. the
rig joints’ position is given by the vertex groups, which are reasonably
preserved due to the incremental nature of our mesh evolution process.
We can then simply insert our mesh instead of the SMPL mesh and inherit
existing animations for the given rig. Note, that in our experiments, for
simplicity, we removed all existing blend shapes that are associated with the
original vertex groups.

For face splits, we compute a weighted average of the neighboring
vertices and take the maximum to assign the new vertex to a group.
If an edge is collapsed, we pick the one-hot encoding of the adjacent
vertex with the highest Q-slim score. As can be seen in Figure 7, the
topology updates preserve the vertex groups.

3.2 Application: Textured Meshes
As described in the main paper, in order to decouple the RGB ren-
dering from the topology, our appearance network is queried on the

, Vol. 1, No. 1, Article . Publication date: October 2024.



4 •

Fig. 9. Super-sampled colors toUV texture.One of the benefits ofmeshes
is their ability to describe texture in a light and efficient-to-render way. The
super-sampling operation allows to finely sample the color field over the
mesh. This sampling can then be baked to a texture in conjunction with
uv-unwrapping using Xatlas, to output a textured mesh to the user.

super-sampled faces, in a way similar to that of Mesh colors [Yuksel
et al. 2010]. UV textures are more common, and our super-sampled
face colors can easily be turned into this representation, as shown
in Figure 9.

REFERENCES
Amir Barda, Yotam Erel, Yoni Kasten, and Amit H. Bermano. 2023. ROAR: Ro-

bust Adaptive Reconstruction of Shapes Using Planar Projections. (2023).
arXiv:2307.00690 [cs.GR]

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. 2023. InstructPix2Pix: Learning
to Follow Image Editing Instructions. (2023).

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust fairing via conformal
curvature flow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.

William Gao, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, and Rana Hanocka.
2023. TextDeformer: Geometry Manipulation using Text Guidance. SIGGRAPH
(2023).

Yuan-Chen Guo, Ying-Tian Liu, Ruizhi Shao, Christian Laforte, Vikram Voleti, Guan
Luo, Chia-Hao Chen, Zi-Xin Zou, Chen Wang, Yan-Pei Cao, and Song-Hai Zhang.
2023. ThreeStudio: A unified framework for 3D content generation. https://github.
com/threestudio-project/threestudio. (2023).

Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions. In
ICCV.

Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. 2023. NerfAcc: Efficient
Sampling Accelerates NeRFs. ICCV (2023).

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34, 6,
Article 248 (oct 2015), 16 pages. https://doi.org/10.1145/2816795.2818013

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. ACM Transactions

on Graphics (2022).
Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni, Michael Niemeyer, and Fed-

erico Tombari. 2024. TextMesh: Generation of Realistic 3D Meshes From Text
Prompts. 3DV (2024).

Cem Yuksel, John Keyser, and Donald House. 2010. Mesh Colors. ACM Transactions on
Graphics (2010).

Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and Guanbin Li. 2023. DreamEditor:
Text-Driven 3D Scene Editing with Neural Fields. SIGGRAPH Asia (2023).

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://arxiv.org/abs/2307.00690
https://github.com/threestudio-project/threestudio
https://github.com/threestudio-project/threestudio
https://doi.org/10.1145/2816795.2818013

	1 Implementation Details
	1.1 Initialization
	1.2 SDF representation
	1.3 Training Procedure
	1.4 mesh learning rate schedule
	1.5 Topology updates to maintain the border between editable region and non-editable region

	2 Evaluation
	2.1 Unconditional text-to-3D
	2.2 More baselines for local generative editing.
	2.3 Further Details on Reconstruction Experiment
	2.4 Further ablation

	3 Application
	3.1 Application: Animation Transfers
	3.2 Application: Textured Meshes

	References

